Exoplanetary Atmospheres and Habitability

Observatoire de Nice

12-16 Octobre 2015

N-rich prebiotic chemistry in the atmosphere of Titan

Nathalie Carrasco

Why looking at Titan ?

	Earth	Titan
Radius	6378 km	2575 km
Tsurf	288 K	93 K

Titan as an exoplanet and Habitability: Physical and chemical conditions favoring extremes forms of life, not necessarily those known on Earth

1- A dense atmosphere

	Earth	Titan
Psurf	10 ⁵ Pa	1.5 ×10 ⁵ Pa
Atmospheric	N ₂ 78 %,	N ₂ 98 %,
composition	O ₂ 21 %	CH ₄ 2 %

Protects the surface from harsh UV irradiations

2- Organic molecules

3- Liquid area

Storms and methane rain

(Copyright NASA)

The Cassini-Huygens mission: 2004-2017

• Data for probing Titan's atmosphere

The Cassini-Huygens mission: 2004-2017

• Data for probing Titan's atmosphere

Ionosphere:
 In situ instruments / MS
 neutrals, cations, anions, e-

Stratosphere:
 Remote sensor / IR
 Neutrals, aerosols

Stratosphere: IR spectroscopy

HCN: abundant molecule @ppm

Stratosphere: IR spectroscopy

Unsuspected reactivity of nitriles: Missing consumption process

- Stronger polar enrichment of nitriles than hydrocarbons for a similar photochemical lifetime
- Steeper HCN profile
 observed than predicted

Teanby et al. 2010 Vinatier at al. 2007

The Cassini-Huygens mission: 2004-2017

• Data for probing Titan's atmosphere

Ionosphere:
 In situ instruments / MS
 neutrals, cations, anions, e-

Stratosphere:
 Remote sensor / IR
 Neutrals, aerosols

Ionosphere: chemical involvement of N₂

- Photodissociation and ionization of N₂
 - N₂*, N(⁴S), N(²D), N₂⁺, N⁺, N₂⁺⁺, N⁺⁺

Dutuit et al. 2013, APJ Sup ser.

- Reactions with hydrocarbons: $CH_4 - C_3H_8$

Ionosphere: unexpected organic growth

- INMS: Neu & Ion⁺
- CAPS-IBS : Ion+
- « Ion chemistry » models hardly explain ion growth
 Highest abundances =
 - N-containing ions

Waite et al 2007 Vuitton et al. 2008 Carrasco et al. 2007 LATM

Ionosphere: main ion HCNH⁺

4

S

Ionosphere: protonated imines

$N(^{2}D)+CH_{4}\rightarrow CH_{2}=NH + H$ highly polymerizable

 \rightarrow key towards aerosols ?

Ionosphere: where aerosol are initiated

- Mass transfer from positive ions to negatively charged particles
 - Correlation between CAPS IBS and CAPS ELS spectra

Stratosphere: IR spectroscopy

Aerosols signature FIR-MIR

A future mission to Titan after Cassini ?

- What cannot be answered with the present instruments onboard Cassini
 - Identification of the large molecules in the atmosphere
 - N content ?
 - Nucleation precursors

 \rightarrow Mass resolution improvement in the upper atmosphere \rightarrow In situ analysis of the aerosols in the stratosphere

Meanwhile : experimental simulation

Plasma: dissociation and dissociative ionization of N₂ and CH₄ by electronic impact

Aerosol collection and analysis

 10 hrs ≈ 100 mg of Titan's organic aerosol analogues

High resolution mass spectrometry

070626_lot2MeOH #3-225_RT: 0,06-6,54_AV: 223_NL: 6,25E5_

Complex composition, but well structured spectra → polymeric structure

Pernot et al. Anal. Chem 2010.

High resolution mass spectrometry

Molecular identification

- Nitrogen-rich prebiotic matterial
 Derivatization + GC-MS analysis
 - + comparison to a standard

Nitrogen efficient for chemical growth

- Comparison of the aerosol productions with and without N₂
- CH₄ diluted either in N₂ or in He (90-10%)

	With N ₂	With He
Aerosol production rate mg.hr ⁻¹	6.1	1.0

Pyr-GCMS analysis of analogues

Conclusion

- Titan is an accessible model of exoplanet with a high habitability interest
- Nitrogen is found to be essential for chemical growth
- The accessibility and the numerous Cassini data enabled to validate global experimental simulation to study upper atmospere system

→ Plasma experiments provide a pertinent and powerful tool to explore the reactivity of exoplanet upper atmospheres.