Hot exoplanets

L. Kaltenegger, S. Rugheimer, J. Linsky, J. Kasting, R. K. Kopparapu, B. Fegley Jr., L. Schaefer, E. Simoncini

Yamila Miguel Observatoire de la Côte d'Azur

Introduction: exoplanets detected

Yamila Miguel (OCA)

Introduction: exoplanets detected

Yamila Miguel (OCA)

Yamila Miguel (OCA)

CHEOPS, TESS, K2, PLATO

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Outline

Hot-giant planets primary atmosphere

Hot-rocky planets secondary (outgassed) atmospheres

Yamila Miguel (OCA)

Outline

Hot-giant planets primary atmosphere

Yamila Miguel (OCA)

Modeling hot mini-Neptunes & hot Jupiters

Yamila Miguel (OCA)

Yamila Miguel (OCA)

GJ 436b

Miguel+2014, Miguel+in prep. also: Moses+2013, Agundez+2014

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Miguel+2014, Miguel+in prep. also: Moses+2013, Agundez+2014

Yamila Miguel (OCA)

Volume Mixing Ratio Other photochamical models on EPGs: Zahnle+2009a,b, Line+2010, 2013, Moses+2011,2012, 2013, Venot+2012, Kopparapu+2012

Yamila Miguel (OCA)

Other photochamical models on EPGs: *Zahnle+2009a,b, Line+2010, 2013, Moses+2011,2012, 2013, Venot+2012, Kopparapu+2012*

Yamila Miguel (OCA)

Volume Mixing Ratio Other photochamical models on EPGs: Zahnle+2009a,b, Line+2010, 2013, Moses+2011,2012, 2013, Venot+2012, Kopparapu+2012

Yamila Miguel (OCA)

Volume Mixing Ratio Other photochamical models on EPGs: Zahnle+2009a,b, Line+2010, 2013, Moses+2011,2012, 2013, Venot+2012, Kopparapu+2012

Yamila Miguel (OCA)

Outline

Hot-rocky planets secondary (outgassed) atmospheres

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Link observables to atmospheric composition

Developed simple approach to predict initial atmospheric composition of hot-rocky planets based on observables.

Yamila Miguel (OCA)

Link observables to atmospheric composition

Developed simple approach to predict initial atmospheric composition of hot-rocky planets based on observables.

Yamila Miguel (OCA)

Miguel+ 2011 - updated 2014 see also Schaefer & Fegley 2009

Nice - October 2015

Miguel+ 2011 - updated 2014 see also Schaefer & Fegley 2009

Nice - October 2015

Miguel+ 2011 - updated 2014 see also Schaefer & Fegley 2009

Nice - October 2015

Miguel+ 2011 - updated 2014 see also Schaefer & Fegley 2009

Nice - October 2015

Miguel+ 2011 - updated 2014 see also Schaefer & Fegley 2009

Nice - October 2015

Miguel+ 2011 - updated 2014 see also Schaefer & Fegley 2009

Nice - October 2015

Observables (a, R_p , $T_{\star eff}$)

Yamila Miguel (OCA)

Atmospheric Composition Crust Composition

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Yamila Miguel (OCA)

Hot-Giants: we link observables (a, T_{eff} , R) with atmospheric TP profile, chemistry and observable spectral features using disequilibrium chemistry.

Our grid can be used to select targets, characterise exoplanets and interpret atmospheric retrieval analysis.

Hot-rocky: we calculated the gases outgassed from the surface and built the atmosphere. The most abundant species are Na and SiO, we found less O_2 . Disequilibrium chemistry -specially vertical mixing- is extremely important.

Thanks!