Highly Evolved Exoplanet Atmospheres

Renyu Hu Hubble Fellow Jet Propulsion Laboratory California Institute of Technology Collaborators: Yuk L. Yung (Caltech), Sara Seager (MIT)

Diverse Atmospheres on Terrestrial Planets

H₂+He Atmospheres on Gas Planets

Diversity in Planet Population

Detecting (Exo)Planet Atmospheres

Warm (Sub) Neptunes

What could happen to the H/He envelopes of super Earths/mini Neptunes?

Photoevaporation

EUV and perhaps X-ray radiation of a planet's host star drives evaporation of its atmosphere

Transonic Hydrodynamic Escape

The escape rate does not increase with the heating rate in the transonic regime

He vs. H in Hydrodynamic Escape

Formation of a Helium Atmosphere

Black: Initial Mass ~ 0.2 % Planetary Mass Blue: Initial Mass ~ 0.4 % Planetary Mass

Formation of a Helium Atmosphere

What are the atmospheres of evolved super Earths/mini Neptunes made of?

Photochemistry-Thermochemistry Model

Hu et al. 2012, 2013; Hu & Seager 2014

Stability Diagram of O-Rich Atmosphere

Hydrogen content and temperature dominate the speciation of carbon

Stability Diagram of C-Rich Atmosphere

High-order hydrocarbons form as a result of hydrogen loss

Hu & Seager 2014

Compatibility of Atmospheric Gases on Super Earths

- H₂ is compatible with all common gases of C, H, O elements, including CO₂
- H₂O is not compatible with significant amounts of CH₄ or CO
- CH₄ is not compatible with CO₂

Hu & Seager 2014

How to detect highly evolved exoplanet atmospheres?

- via thermal emission

Thermal Emission of GJ 436 b Fitted by a Helium Atmosphere

Thinking about JWST

Observing a planet in thermal emission can distinguish atmosphere scenarios

How to detect highly evolved exoplanet atmospheres?

- via transmission

Transmission of GJ 436 b Fitted by a Helium Atmosphere

- A helium atmosphere on GJ 436 b must have an aerosol layer at the pressure of 1 – 100 mbar to be consistent with the transmission spectrum
- Without the aerosol layer, H₂O and CO₂ features dominate the transmission spectrum

Knutson et al. 2014; Hu et al. 2015

Evolution of Transmission Spectrum

Hu 2015, in prep.

Evolution of Transmission Spectrum

Hu 2015, in prep.

Evolution of Transmission Spectrum

Hu 2015, in prep.

Characteristics of Helium Atmosphere

Conclusions

- Neptune- and sub-Neptune-sized exoplanets may have highly evolved atmospheres depleted in hydrogen but abundant in helium
- A helium atmosphere can fit the emission features of GJ 436 b
- Evolution of short-period exoplanets leads to distinctive atmospheric characteristics, testable by current transit observations