

Workshop Exoplanetary Atmospheres and Habitability Nice - 15<sup>th</sup> October 2015

### Disequilibrium chemistry and stellar flares in exoplanet atmospheres

#### Olivia Venot olivia.venot@ster.kuleuven.be

M. Rocchetto, L. Decin, M. Agúndez, E. Hébrard, R. Bounaceur, F. Selsis, M. Dobrijevic, F. Hersant, M. Tessenyi, S. Carl, A. R. Hashim

**KU LEUVEN** 



NASA, ESA, and G. Bacon (STScI)



source : exoplanet.eu (30 September 2015)



source : exoplanet.eu (30 September 2015)



source : exoplanet.eu (30 September 2015)

![](_page_4_Figure_0.jpeg)

source : exoplanet.eu (30 September 2015)

### Access to elementary abundances

![](_page_5_Figure_1.jpeg)

→ no access to the deep atmosphere

hot temperatures: no condensation  $\rightarrow$  access to the deep atmosphere

Thermochemical equilibrium: depends on P, T, elementary abundances

![](_page_6_Picture_2.jpeg)

Thermochemical equilibrium: depends on P, T, elementary abundances I. Photodissociations

![](_page_7_Picture_3.jpeg)

Thermochemical equilibrium: depends on P, T, elementary abundances I. Photodissociations

2. Horizontal circulation (winds)

![](_page_8_Picture_4.jpeg)

Thermochemical equilibrium: depends on P, T, elementary abundances I. Photodissociations

2. Horizontal circulation (winds)

3. Vertical mixing (convection, turbulence)

![](_page_9_Picture_5.jpeg)

Thermochemical equilibrium: depends on P, T, elementary abundances I. Photodissociations

2. Horizontal circulation (winds)

3. Vertical mixing (convection, turbulence)

![](_page_10_Picture_5.jpeg)

interpretation spectroscopy :need kinetic models

![](_page_11_Figure_0.jpeg)

collaborations: forward model M. Rocchetto (UCL) - M. Agúndez (ICMM)

### Chemical networks

• Totally new in planetology:

![](_page_12_Picture_2.jpeg)

- interdisciplinary collaboration specialist of combustion (LRGP, Nancy)
- schemes validated experimentally wholes large ranges P (10-3-10<sup>2</sup> bar) T (300-2500 K)
- 1920 reactions, 105 species (C,H,O,N), C<sub>2</sub> Venot et al. 2012, A&A
- 4002 reactions, 240 species (C,H,O,N), C<sub>6</sub> Venot et al. 2015, A&A
- available for the community on KIDA (http://kida.obs.u-bordeaux1.fr/)

#### Parameters

Chemical model permits to study the influence of:

- Out of equilibrium processes:
- mixing
- photodissociations stellar flux

- Intrinsic properties of the planetary atmosphere:
- metallicity
- temperature
- elemental enrichment (C/O ratio)

#### Parameters

Chemical model permits to study the influence of:

- Out of equilibrium processes:
- mixing
- photodissociations stellar flux

- Intrinsic properties of the planetary atmosphere:
- metallicity
- temperature
- elemental enrichment (C/O ratio)

![](_page_15_Figure_1.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_0.jpeg)

At solar metallicity:  $CH_4$  and  $H_2O$  close to thermo eq. - more abundant than COWith increasing metallicity: most of mole fraction increases (CO,  $CO_2$ , HCN,  $N_2$ ,...) but some decrease ( $CH_4$ )  $\rightarrow$  ratio  $CO/CH_4$  increases together with metallicity

increase of metallicity + quenching: change in main carrier of elements (C-O)  $(@1mbar I \times solar: H_2O)$  and CH<sub>4</sub> are main O- and C-bearing species (as predicted by eq.) 100 x solar: CO is the main O- and C-bearing species (contrary to prediction of eq.)

### Elemental Abundances: C/O

![](_page_20_Figure_1.jpeg)

Wavelength (micrometers)

Venot et al. 2015, A&A

![](_page_21_Figure_0.jpeg)

hot atmospheres (T>1000K)

C/O ratio: effect on composition (less  $H_2O$  - more  $CH_4$ ,  $C_2H_2$ , HCN...)

![](_page_22_Figure_0.jpeg)

features of CO,  $CO_2$ 

C-rich: global form due to  $H_2-H_2$ collisions + features of CH<sub>4</sub>, CO and C<sub>2</sub>H<sub>2</sub>, and HCN (15µm)  $\rightarrow$  tracers of C/O ratio

![](_page_22_Figure_3.jpeg)

# Comparison of the schemes

- — C<sub>6</sub> Venot et al., A&A, 2015 — — — C<sub>2</sub>
- $T_{500}$   $\zeta_{0.54}$ : no UV flux, no difference

![](_page_23_Figure_3.jpeg)

# Comparison of the schemes

— — — C<sub>6</sub> Venot et al., A&A, 2015 — — — C<sub>2</sub>

 $T_{500}$   $\zeta_{0.54}$ : with UV flux, differences at high altitude

![](_page_24_Figure_3.jpeg)

# With UV flux

 $--- C_2$ 

 $T_{500}$   $\zeta_{0.54}$ : with UV flux, differences at high altitude

 CO et C<sub>2</sub>H<sub>2</sub>: more destroyed with the C<sub>6</sub> scheme

Venot et al., A&A, 2015

![](_page_25_Figure_4.jpeg)

# With UV flux

 $--- C_{2}$ 

 $T_{500}$   $\zeta_{0.54}$ : with UV flux, differences at high altitude

 CO et C<sub>2</sub>H<sub>2</sub>: more destroyed with the C<sub>6</sub> scheme

Venot et al., A&A, 2015

10<sup>-5</sup>

 $\Rightarrow$  the carbon ends up in cC<sub>6</sub>H<sub>8</sub>

 $CO + hv \rightarrow C + O^{3P}$   $CH_4 + hv \rightarrow CH + H_2 + H$   $CH + H2 \rightarrow {}^{3}CH_2 + H$   ${}^{3}CH_2 + C \rightarrow C_2H + H$   $C_2H + H \rightarrow C_2H_2$   $C_2H_2 + C_2H_2 + C_2H \rightarrow IC_6H_5$   $IC_6H_5 \rightarrow CC_6H_5$   $CC_6H_5 + H \rightarrow CC_6H_6$   $CC_6H_6 + H \rightarrow CC_6H_7$   $CC_6H_7 + H \rightarrow CC_6H_8$ 

![](_page_26_Figure_6.jpeg)

 $CO + CH_4 + C_2H_2 + C_2H + H \longrightarrow cC_6H_8 + O^{3P}$ 

# With UV flux

C<sub>6</sub>

 $C_2$ 

Venot et al., A&A, 2015

### $T_{500} \zeta_{0.54}$ : with UV flux, differences at high altitude

- CO et C<sub>2</sub>H<sub>2</sub>: more destroyed with the C<sub>6</sub> scheme
- $\Rightarrow$  the carbon ends up in cC<sub>6</sub>H<sub>8</sub>

 $CO + hv \rightarrow C + O^{3P}$   $CH_4 + hv \rightarrow CH + H_2 + H$   $CH + H2 \rightarrow {}^{3}CH_2 + H$   ${}^{3}CH_2 + C \rightarrow C_2H + H$   $C_2H + H \rightarrow C_2H_2$   $C_2H_2 + C_2H_2 + C_2H \rightarrow IC_6H_5$   $IC_6H_5 \rightarrow CC_6H_5$   $CC_6H_5 + H \rightarrow CC_6H_6$   $CC_6H_6 + H \rightarrow CC_6H_7$   $CC_6H_7 + H \rightarrow CC_6H_8$ 

 $CO + CH_4 + C_2H_2 + C_2H + H \rightarrow cC_6H_8 + O^{3P}$ 

Photodissociations, through complex formation pathways create species with significant abundances

![](_page_27_Figure_8.jpeg)

### Effect of Stellar flares

M-class stars:

- very abundant in the galaxy  $\Rightarrow$  likely to harbour most of the planetary systems
- very active stars  $\Rightarrow$  subject to stellar variability (star spots, flares, ...)
- In which extent can a stellar flare modify the chemical composition of an exoplanetary atmosphere and influence the resulting spectra?

![](_page_28_Figure_5.jpeg)

![](_page_29_Figure_0.jpeg)

### Chemical composition

![](_page_30_Figure_1.jpeg)

### Chemical composition

![](_page_31_Figure_1.jpeg)

### Chemical composition

For both PT profiles: same kind of evolution of abundances during flare

depth and amplitude of variation are species-dependent

for a NH3: deeper effect in the hot case

![](_page_32_Figure_4.jpeg)

# Long-term effect on the chemical composition

After the end of the flare (2586s): stellar flux comes back to quiescence Steady-state reached after  $10^9 / 10^8$  s Hot thermal profile keep trace of the flare in the upper atmosphere

![](_page_33_Figure_2.jpeg)

### Effect on transmission spectra

forward model (Waldmann et al. 2015)

![](_page_34_Figure_2.jpeg)

### Effect on transmission spectra

forward model (Waldmann et al. 2015)

![](_page_35_Figure_2.jpeg)

### Summary

\* High T validated chemical networks available to the community  $\Rightarrow$  KIDA

\* Many parameters and processes influence the chemical composition of exoplanets:

- High metallicity leads to high CO/CH<sub>4</sub> ratio
- High metallicity + quenching leads to a change in C- & O- bearing species
- Elemental enrichment (C/O): effect at high T (> 1000K)
- $C_2H_2$  and HCN can be used as tracers in warm atmospheres
- Stellar flares can significantly modify the atmospheric composition of exoplanets
- Transmission spectra: variations up to 110 ppm during the flare (~sensitivity of current and future instruments)
- unlikely that flares cause significant biases in the retrieved spectrum (several transits necessary to reduced uncertainties + duration of transit ~ duration of flare (~hours))
- Upper atmosphere keeps trace of the event a long period after the end of the flare (at least 10<sup>8</sup>s), especially in warmest exoplanets
- ⇒possible to see variations before / after flare (spectra with high S/R)

## Bonus message

- modelling performed with absorption cross sections at 300 K (except CO<sub>2</sub> and NH<sub>3</sub>)
- data depend strongly on temperature
- CO<sub>2</sub>@200 nm : 4 orders of magnitude between 300K and 800K
- higher absorption for all species could lead to different results

![](_page_37_Figure_5.jpeg)

# Bonus message

- modelling performed with absorption cross sections at 300 K (except CO<sub>2</sub> and NH<sub>3</sub>)
- data depend strongly on temperature
- CO<sub>2</sub>@200 nm : 4 orders of magnitude between 300K and 800K
- higher absorption for all species could lead to different results

![](_page_38_Figure_5.jpeg)