A Collisional Origin for the Coexistence of Volatile-poor Super-Earths and Mini-Neptunes in the Proximity of Stars

Yasunori Hori

National Astronomical Observatory of Japan
Astrobiology center;
National Institutes of Natural Sciences

Collaborators: Shang-fei Liu (UCSC)
Douglas N.C. Lin (UCSC)
Erik Asphaug (Arizona State Univ.)

Exoplanetary Atmospheres and Habitability (Nice, 12-15, Oct.)
Prevalence of Low-Mass Planets with Atmospheres

Mass-radius relationship of transiting planets with mass of $< 30 M_\oplus$

- H$_2$O + 10wt% HHe
- MgSiO$_3$ + 10w% HHe
- H$_2$O
- MgSiO$_3$
- Fe
Prevalence of Low-Mass Planets with Atmospheres

Mass-radius relationship of transiting planets with mass of $< 30 \, M_\oplus$
Prevalence of Low-Mass Planets with Atmospheres

Mass-radius relationship of transiting planets with mass of $< 30 \, M_\oplus$
Prevalence of Low-Mass Planets with Atmospheres

Mass-radius relationship of transiting planets with mass of $< 30 \, M_\oplus$

Most of short-period planets should have atmospheres (typically < 10wt%)
A Weird Kepler-36 and Kepler-11 System

Kepler-36b @ 13.8 days
- Earth-like composition

Kepler-36c @ 16.2 days
- H/He atmosphere atop the core (~ 8.6 wt%) (Lopez & Fortney, 2013)

(Carter et al., 2012)
A Weird Kepler-36 and Kepler-11 System

Kepler-36b @13.8 days

Earth-like composition

Kepler-36c @16.2 days

H/He atmosphere atop the core

(~ 8.6wt%) (Lopez & Fortney, 2013)

Kepler-11b @10.3 days

A tenuous atmosphere (0.5wt%)

Kepler-11c @13.0 days

A relatively-thick atmosphere (5.0wt%)
Compositional Dissimilarity of Low-Mass Planets On Adjacent Orbits Near Host Stars

The origin of a high density contrast b/w neighboring planets?

(1) **Degassing** from accreting material (e.g. Elkins-Tanton & Seager, 2008)

(2) **Photo-evaporation** via stellar XUV irradiation or a Parker wind (e.g. Owen & Wu, 2013)

(3) **Regulation of disk accretion** onto a core
 - in-situ accumulation in a dissipating disk (e.g. Ikoma & YH, 2012; Lee *et al.*, 2014)
 - rapid in/outflow of the disk gas (Ormel *et al.*, 2014)
 - magnetic suppression of gas accretion (?)
Compositional Dissimilarity of Low-Mass Planets On Adjacent Orbits Near Host Stars

The origin of a high density contrast b/w neighboring planets?

1. **Degassing** from accreting material (e.g. Elkins-Tanton & Seager, 2008)
2. **Photo-evaporation** via stellar XUV irradiation or a Parker wind
 (e.g. Owen & Wu, 2013)
3. **Regulation of disk accretion** onto a core
 - in-situ accumulation in a dissipating disk
 (e.g. Ikoma & YH, 2012; Lee et al., 2014)
 - rapid in/outflow of the disk gas (Ormel et al., 2014)
 - magnetic suppression of gas accretion (?)
Compositional Dissimilarity of Low-Mass Planets On Adjacent Orbits Near Host Stars

The origin of a high density contrast b/w neighboring planets?

(1) **Degassing** from accreting material (e.g. Elkins-Tanton & Seager, 2008)

(2) **Photo-evaporation** via stellar XUV irradiation or a Parker wind (e.g. Owen & Wu, 2013)

(3) **Regulation of disk accretion** onto a core
 - in-situ accumulation in a dissipating disk (e.g. Ikoma & YH, 2012; Lee et al., 2014)
 - rapid in/outflow of the disk gas (Ormel et al., 2014)
 - magnetic suppression of gas accretion (?)

Compositional diversity of close-in super-Earths likely reflects their **formation histories**
 (e.g.) planetary migration, core growth, and giant impacts
Possible Origin of A Closely-Packed MMR System

(Paardekooper et al., 2013)

7:6 MMR

Crossing of the 2:1 MMR

Convergent migration

Smooth Type I migration + Stochastic forcing due to turbulent density fluctuations

Time (yrs)

Amplitude of stochastic forces

Period ratio
Possible Origin of A Closely-Packed MMR System

(Paardekooper et al., 2013)

- **7:6 MMR**
- **Crossing of the 2:1 MMR**
- **Convergent migration**

Amplitude of stochastic forces

Time (yrs)

Period ratio

Smooth Type I migration + **Stochastic forcing** due to turbulent density fluctuations

A compact system in high-p MMR like the Kepler-36 system
Possible Origin of A Closely-Packed MMR System

(Paardekooper et al., 2013)

Smooth Type I migration + Stochastic forcing due to turbulent density fluctuations

A compact system in high-p MMR like the Kepler-36 system
Two migrating planets likely experience **collisions with embryos** in a turbulent disk during their excursion.

Possible Origin of A Closely-Packed MMR System

(Paardekooper et al., 2013)

- Smooth Type I migration + Stochastic forcing due to turbulent density fluctuations
- A compact system in high-p MMR like the Kepler-36 system
Giant Impacts: Accretionary and Destructive

Accretion efficiency as a function of mass ratio (0.1 ▼, 0.5 ■, 1.0 ●), impact angle (0, 30, 45, 60°), and impact velocity (Asphaug, 2010)
Giant Impacts: Accretionary and Destructive

Accretion efficiency as a function of mass ratio (0.1 ▼, 0.5 ■, 1.0 ●), impact angle (0, 30, 45, 60°), and impact velocity

This study

Efficient accretion
Partial accretion
Hit-and-run collision
Erosion Disruption

Random velocity (V_{esc})

Asphaug, 2010
Three-dimensional hydrodynamic simulations: **FLASH with the AMR**

(Fryxell et al., 2000)

- A pair of planets’ center of mass frame
- The width of a computational domain ~ 1 AU
- include the tidal force from a central star
- impose an open boundary condition
Modeling of a Giant Impact

Three-dimensional hydrodynamic simulations: **FLASH with the AMR**

- A pair of planets’ center of mass frame
- The width of a computational domain ~ 1 AU
- Include the tidal force from a central star
- Impose an open boundary condition

Three-Layered interior structures of a target and an impactor

- Tillotson EoS for rocky and iron material (Melosh, 1989)
 - rock (silicate) : iron = 2:1
- Only a target has an atmosphere (7.5wt%)
 - Polytropic EoS for H/He gas (H₂ : He = 7 : 3)

(Fryxell et al., 2000)

(Liu et al., 2013)
Modeling of a Giant Impact

Three-dimensional hydrodynamic simulations: **FLASH with the AMR**

- A pair of planets' center of mass frame
- The width of a computational domain ~ 1 AU
- Include the tidal force from a central star
- Impose an open boundary condition

Three-Layered interior structures of a target and an impactor

- Tillotson EoS for rocky and iron material
 (Melosh, 1989)
 rock (silicate): iron = 2:1
- Only a target has an atmosphere (7.5wt%)
 Polytropic EoS for H/He gas (H₂: He = 7:3)
 (Liu et al., 2013)

Giant impacts (@ 0.1 AU)

- **Head-on collision**

 1. Low-speed model (accretion regime) : \(V_{\text{imp}} = V_{\text{esc}} \)

 \[4.3 \, M_\oplus \ & \ & 1.0 \, M_\oplus\]

 2. High-speed model (destructive regime) : \(V_{\text{imp}} = 3V_{\text{esc}} \)

 \[10 \, M_\oplus \ & \ & 1.0 \, M_\oplus\]
Simulation Movie: A High-Speed Head-On Collision

(Liu, YH, Lin, & Asphaug, 2015)
Simulation Movie: A High-Speed Head-On Collision

(Liu, YH, Lin, & Asphaug, 2015)
Snapshots of Two Head-On Collisions: Density Contours

(Liu, YH, Lin, & Asphaug, 2015)
Snapshots of Two Head-On Collisions: Density Contours

(Liu, YH, Lin, & Asphaug, 2015)

Low-speed impact

Collision

1.56 hrs

The atmosphere is lost by ~30%

High-speed impact

Contact

15 mins

21.5 hrs
Snapshots of Two Head-On Collisions: Density Contours

Low-speed impact

The atmosphere is lost by ~30%

High-speed impact

The atmosphere is lost by ~80%

(Liu, YH, Lin, & Asphaug, 2015)
Snapshots of Two Head-On Collisions: Density Contours

(Liu, YH, Lin, & Asphaug, 2015)

The atmosphere is lost by \(~80\%\)

High-speed impact

The atmosphere is lost by \(~30\%\)

Low-speed impact

A hot atmosphere extends beyond the Hill radius and continues to lose via the Roche-lobe overflow
Snapshots of Material Mixing After Giant Impacts

(a) 18 hrs after a low-speed impact

(b) 21.5 hrs after a high-speed impact
Radial Distribution of Each Species After a Collision

Low-speed impact

High-speed impact
Radial Distribution of Each Species After a Collision

- An initial layered structure is partly maintained after the collision
• An initial layered structure is partly maintained after the collision
• An iron core of the target survives from the impact in both cases and grows in a coalescence manner
Radial Distribution of Each Species After a Collision

• An initial layered structure is partly maintained after the collision
• An iron core of the target survives from the impact in both cases and grows in a coalescence manner
• A fraction of rocky material is dredged up in a H/He atmosphere → the remaining atmosphere is polluted with heavy elements
Compositional Gradient Inside a Target After an Impact

\[
\begin{align*}
\Delta Z &\quad \text{low-speed model} \\
\Delta Z_{\text{SiO}_2} &\quad \text{high-speed model}
\end{align*}
\]

- Mass fraction of iron, silicate, & total
A low-speed head-on collision develops a hot and inhomogeneous interior → a steep, positive compositional gradient suppresses efficient heat transfer(?)
A low-speed head-on collision develops a hot and inhomogeneous interior → a steep, positive compositional gradient suppresses efficient heat transfer (?)

For a high-speed head-on collision, refractory material is homogenized in the target’s interior.
Turbulence or Hydrodynamic Instability?

Species contour

Velocity-vector map
Turbulence or Hydrodynamic Instability?

Species contour

Velocity-vector map

- A **velocity shear** at the interface between two species after an impact
Turbulence or Hydrodynamic Instability?

Species contour

Velocity-vector map

- A velocity shear at the interface between two species after an impact → **K-H instability** (at least for short wavelengths)
• A velocity shear at the interface between two species after an impact → **K-H instability** (at least for short wavelengths)
• An impact-induced shock wave propagation → **R-T instability**
Turbulence or Hydrodynamic Instability?

- A velocity shear at the interface between two species after an impact → **K-H instability** (at least for short wavelengths)
- An impact-induced shock wave propagation → **R-T instability**

However,

An impact-driven turbulence is responsible for the **global mixing**
A protracted state of a hot and inflated atmosphere

(a) Mass loss via a **Parker wind** (Owen & Wu, 2015)

(b) Mass loss from the Roche lobe via a **stellar XUV irradiation**
A protracted state of a hot and inflated atmosphere

(a) Mass loss via a **Parker wind** (Owen & Wu, 2015)
 About 80% of the remaining atmosphere is lost

(b) Mass loss from the Roche lobe via a **stellar XUV irradiation**
A protracted state of a hot and inflated atmosphere

(a) Mass loss via a Parker wind (Owen & Wu, 2015)
 About 80% of the remaining atmosphere is lost

(b) Mass loss from the Roche lobe via a stellar XUV irradiation

 XUV flux at the Hill radius:
 \[L = 1.0 \times 10^{-7} \, L_\odot, \quad 1.5 \times 10^{-7} \, L_\odot \] for low- & high-speed model

 A heating efficiency in the upper atmosphere due to XUV photons
 \[\epsilon = 0.1 \] (Yelle, 2004)
A protracted state of a hot and inflated atmosphere

(a) Mass loss via a Parker wind (Owen & Wu, 2015)
 About 80% of the remaining atmosphere is lost

(b) Mass loss from the Roche lobe via a stellar XUV irradiation

 XUV flux at the Hill radius:
 \[L = 1.0 \times 10^{-7} \ L_\odot , \ 1.5 \times 10^{-7} \ L_\odot \] for low- & high-speed model

 A heating efficiency in the upper atmosphere due to XUV photons
 \[\epsilon = 0.1 \] (Yelle, 2004)

 Mass loss rate \(\sim 3 \ M_\oplus/\text{Myr} , \ 2 \ M_\oplus/\text{Myr} \) for low, high-speed model
A protracted state of a hot and inflated atmosphere

(a) Mass loss via a Parker wind (Owen & Wu, 2015)
 About 80% of the remaining atmosphere is lost

(b) Mass loss from the Roche lobe via a stellar XUV irradiation

 XUV flux at the Hill radius:
 \[L = 1.0 \times 10^{-7} \, L_\odot, \; 1.5 \times 10^{-7} \, L_\odot \] for low- & high-speed model

 A heating efficiency in the upper atmosphere due to XUV photons
 \[\epsilon = 0.1 \] (Yelle, 2004)

 Mass loss rate \(\sim 3 \, M_\oplus/\text{Myr}, \; 2 \, M_\oplus/\text{Myr} \) for low, high-speed model

 But, the Kelvin-Helmholtz contraction timescale:
 \(\sim 1 \, \text{Myr}, \; < \sim 10 \, \text{kyr} \) for low- & high-speed model

 A typical decay timescale of a XUV flux for a Sun-like star \(\sim 0.1 \, \text{Gyr} \)
 (Ribas et al., 2005)
A protracted state of a hot and inflated atmosphere

(a) Mass loss via a **Parker wind** (Owen & Wu, 2015)

About 80% of the remaining atmosphere is lost

(b) Mass loss from the Roche lobe via a **stellar XUV irradiation**

XUV flux at the Hill radius:

\[L = 1.0 \times 10^{-7} L_\odot, \quad 1.5 \times 10^{-7} L_\odot \] for low- & high-speed model

A heating efficiency in the upper atmosphere due to XUV photons

\[\epsilon = 0.1 \] (Yelle, 2004)

Mass loss rate \(\sim 3 \, M_\oplus/\text{Myr}, \, 2 \, M_\oplus/\text{Myr} \) for low, high-speed model

But, the Kelvin-Helmholtz contraction timescale:

\(~1 \, \text{Myr}, < \sim 10 \, \text{kyr} \) for low- & high-speed model

A typical decay timescale of a XUV flux for a Sun-like star \(~0.1 \, \text{Gyr} \)

(Ribas *et al.*, 2005)

The target in the high-speed model is unlikely to lose the entire envelope
Take-Home Messages

Different histories of giant impacts result in

1. **compositional diversity** of super-Earths (Inadmar & Schlichting, 2015)
2. **homogeneous or inhomogeneous** interior
 \[\rightarrow \text{suppresses efficient heat transfer} \]
 \[\text{(e.g.) double diffusive convection} \]
3. **a hot and inflated atmosphere** (extended beyond the Hill radius)
 which **enhances mass loss** via photo-evaporation or a Parker wind
4. **the survival of a planetary iron core** through a merger
5. **dredge-up of rocky material into a H/He atmosphere** caused by turbulence driven by an impact-induced shock wave
6. **a partial disruption of a three-layered structure**

(cf) A violent head-on collision can account for thermal evolution of Neptune, i.e., a initially-hot and homogeneous interior
(but a grazing impact would retain a stably-stratified interior)

(Liu, YH, Lin, & Asphaug, *in preparation*)