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Prevalence of Low-Mass Planets with Atmospheres

Mass-radius relationship of transiting planets with mass of < 30 Mg

3 .
/t e } + : _
D6} - + - ‘ _
= — , , ——H20 + 10wt% HHe
5 5t |  ————————MgSiO3 +10w% HHe
'—g ; - m%g, [T A
= | J p;i —— | g 2 T TR o
T 3 e e e man— 1.1 oE
Z S| [T e P | S S—— .
S 4 {Fe
al 1
114 .
0 5 10 15 20 25 30

Planetary mass (M)



Prevalence of Low-Mass Planets with Atmospheres

Mass-radius relationship of transiting planets with mass of < 30 Mg

3 .
/t e } + : _
J6f 5 + - ‘ _
= S~ ] , , —{H20 + 10wt% HHe
2 5| ‘ ¢ & ———MgSi0s +10w% HHe
'—g ; - m%g, [T A
= | J p;i —— | g 2 T TR 0
3 3 e MgSiOs
= S| [T T T Ll S — °
S 4 {Fe
o 1
114 .
0 5 10 15 20 25 30

Planetary mass (M)



Prevalence of Low-Mass Planets with Atmospheres

Mass-radius relationship of transiting planets with mass of < 30 Mg
H/He H/He

8

/L
Cry i
& H.0 + 10wt% HHe
351 = MgSiOs +10w% HHe
3 4l
o H20
« 3t 1MgSiOs
&
S 2 1Fe
o

[RE

0 5 10 15 20 25 30

Planetary mass (M)



Prevalence of Low-Mass Planets with Atmospheres
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Most of short-period planets should have atmospheres (typically < T0wt%)



A Weird Kepler-36 and Kepler-11 System
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Compositional Dissimilarity of Low-Mass Planets

On Adjacent Orbits Near Host Stars

The origin of a high density contrast b/w neighboring planets?

(1) Degassing from accreting material (e.g.Elkins-Tanton & Seager, 2008)

(2) Photo-evaporation via stellar XUV irradiation or a Parker wind
(e.g. Owen & Wu, 2013)

(3) Regulation of disk accretion onto a core

» in-situ accumulation in a dissipating disk
(e.g. Ikoma & YH,2012; Lee ef al.,2014)

- rapid in/outflow of the disk gas (Ormel ez al., 2014)
 magnetic suppression of gas accretion (?)
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Compositional Dissimilarity of Low-Mass Planets

On Adjacent Orbits Near Host Stars

The origin of a high density contrast b/w neighboring planets?

(%) Degassing from accreting material (e.g.Elkins-Tanton & Seager, 2008)

(2) Photo-evaporation via stellar XUV irradiation or a Parker wind
(e.g. Owen & Wu, 2013)

(3) Regulation of disk accretion onto a core

» in-situ accumulationdin a dissipating disk
(e.g. Ikoma & YH,2012; Lee ef al.,2014)

- rapid in/outflow of the disk gas (Ormel ez al., 2014)
 magnetic suppression of gas accretion (?)

Compositional diversity of close-in super-Earths likely reflects
their formation histories

(e.g.) planetary migration, core growth, and giant impacts
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Possible Origin of A Closely-Packed MMR System

(Paardekooper et al.,2013)
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Giant Impacts: Accretionary and Destructive

Accretion efficiency as a function of mass ratio (0.1, 0.5, 1.0@),

impact angle (0, 30, 45,60 ), and impact velocity
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Modeling of a Giant Impact

Three-dimensional hydrodynamic simulations : FLASH with the AMR

+ A pair of planets’ center of mass frame (Fryxell et al., 2000)

* The width of a computational domain ~ 1 AU
- include the tidal force from a central star
* impose an open boundary condition




Modeling of a Giant Impact

Three-dimensional hydrodynamic simulations : FLASH with the AMR

+ A pair of planets’ center of mass frame (Fryxell et al., 2000)

* The width of a computational domain ~ 1 AU
- include the tidal force from a central star
* impose an open boundary condition

Three-Layered interior structures of a target and an impactor

H/He

Tillotson EoS for rocky and iron material  (Melosh, 1989)
rock (silicate) : iron = 2:1

Only a target has an atmosphere (7.5wt%)
Polytropic EoS for H/He gas (H2: He=7:3)
(L et al., 2013)




Modeling of a Giant Impact

Three-dimensional hydrodynamic simulations : FLASH with the AMR

+ A pair of planets’ center of mass frame (Fryxell et al., 2000)

* The width of a computational domain ~ 1 AU
- include the tidal force from a central star
* impose an open boundary condition

Three-Layered interior structures of a target and an impactor

H/He

Tillotson EoS for rocky and iron material  (Melosh, 1989)
rock (silicate) : iron = 2:1

Only a target has an atmosphere (7.5wt%)
Polytropic EoS for H/He gas (H2: He=7:3)
(L et al., 2013)

Giant impacts (@ 0.1A0)

\W

(1) Low-speed model (accretion regime) : Vimp = Vesc
K 4.3 Mgy & 1.0 Mg

(2) high-speed model (destructive regime) : Vimp = 3Vesc
head-on collision 10 M, & 1.0 My,

N



Simulation Movie : A High-Speed Head-On Collision

(L1u, YH, Lin, & Asphaug, 2015)
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Snapshots of Two Head-On Collisions : Density Contours
(L, YH, Lin, & Asphaug, 2015)
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Snapshots of Two Head-On Collisions : Density Contours
(L, YH, Lin, & Asphaug, 2015)

The atmosphere is lost by ~80%

® Gollision
High-speed impact

(a) ¢
Contact | 215 hrs ‘\

Lo

® 19 mins

The atmosphere is lost by ~30%

A hot atmosphere extends beyond the Hill radius and continues to lose
via the Roche-lobe overflow




Snapshots of Material Mixing After Giant Impacts

(a) 18 hrs after a low-speed impact
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Radial Distribution of Each Species After a Collision
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» An initial layered structure is partly maintained after the collision
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- An initial layered structure is partly maintained after the collision

- Aniron core of the target survives from the impact in both cases and
grows in a coalescence manner

Enclosed mass (Mg)
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Compositional Gradient Inside a Target After an Impact
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Compositional Gradient Inside a Target After an Impact
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A low-speed head-on collision develops a hot and inhomogeneous interior
— a steep, positive compositional gradient suppresses efficient heat transfer(?)



Compositional Gradient Inside a Target After an Impact
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A low-speed head-on collision develops a hot and inhomogeneous interior
— a steep, positive compositional gradient suppresses efficient heat transfer(?)

For a high-speed head-on collision,
refractory material is homogenized in the target’s interior



Turbulence or Hydrodynamic Instability?
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Turbulence or Hydrodynamic Instability?
species contour
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- A velocity shear at the interface between two species after an impact
— K-H instability (at least for short wavelengths)

- An impact-induced shock wave propagation — R-T instability

However,
An impact-driven turbulence is responsible for the global mixing
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A protracted state of a hot and inflated atmosphere

(@) Mass loss via a Parker wind (Owen & Wu, 2015)
About 80% of the remaining atmosphere is lost

(b) Mass loss from the Roche lobe via a stellar XUV irradiation
XUV flux at the Hill radius:
L=1.0x10""Ly,1.5 x 107" L, for low- & high-speed model

A heating efficiency in the upper atmosphere due to XUV photons
e = (0.1 (Yelle, 2004)

Mass loss rate ~ 3 Mg /Myr, 2 Mg /Myr for low, high-speed model

But, the Kelvin-Helmholtz contraction timescale:
~1 Myr, <~10 kyr for low- & high-speed model

A typical decay timescale of a XUV flux for a Sun-like star ~ 0.1Gyr
(Ribas et al., 2005)

The target in the high-speed model is unlikely to lose the entire envelope



Take-Home Messages

Different histories of giant impacts result in

(1) compositional diversity of super-Earths(inadmar & Schlichting,2015)

(2) homogeneous or inhomogeneous interior

— suppresses efficient heat transfer
(e.g.) double diffusive convection

(3) a hot and inflated atmosphere (extended beyond the Hill radius)
which enhances mass loss via photo-evaporation or a Parker wind

(4) the survival of a planetary iron core through a merger

(5) dredge-up of rocky material into a H/He atmosphere caused by
turbulence driven by an impact-induced shock wave

(6) a partial disruption of a three-layered structure

(cf) A violent head-on collision can account for thermal evolution of
Neptune, i.e., a initially-hot and homogeneous interior
(but a grazing impact would retain a stably-stratified interior)

(L, YH, Lin, & Asphaug, in preparation)



